Aquaculture
Aquaculture is the cultivation of the natural produce of water (fish, shellfish, algae and other aquatic organisms). The term is distinguished from fishing by the idea of active human effort in maintaining or increasing the number of organisms involved, as opposed to simply taking them from the wild. Subsets of aquaculture include Mariculture (aquaculture in the ocean); Algaculture (the production of kelp/seaweed and other algae); Fish farming (the raising of catfish, tilapia and milkfish in freshwater and brackish ponds or salmon in marine ponds); and the growing of cultured pearls. Extensive aquaculture is based on local photosynthetical production while intensive aquaculture is based on fish fed with an external food supply.
Aquaculture has been used since ancient times and can be found in many cultures. Aquaculture was used in China circa 2500 BC. When the waters lowered after river floods, some fishes, namely carp, were held in artificial lakes. Their brood were later fed using nymphs and silkworm feces, while the fish themselves were eaten as a source of protein. The Hawaiian people practiced aquaculture by constructing fish ponds (see Hawaiian aquaculture). A remarkable example from ancient Hawaii is the construction of a fish pond, dating from at least 1,000 years ago, at Alekoko. According to legend, it was constructed by the mythical Menehune. The Japanese practiced cultivation of seaweed by providing bamboo poles and, later, nets and oyster shells to serve as anchoring surfaces for spores. The Romans often bred fish in ponds.
The practice of aquaculture gained prevalence in Europe during the Middle Ages, since fish were scarce and thus expensive. However, improvements in transportation during the 19th century made fish easily available and inexpensive, even in inland areas, causing a decline in the practice. The first North American fish hatchery was constructed on Dildo Island, Newfoundland Canada in 1889, it was the largest and most advanced in the world.
Americans were rarely involved in aquaculture until the late 20th century, but California residents harvested wild kelp and made legal efforts to manage the supply starting circa 1900, later even producing it as a wartime resource. (Peter Neushul, Seaweed for War: California's World War I kelp industry, Technology and Culture 30 (July 1989), 561-583)
Aquaculture has been used since ancient times and can be found in many cultures. Aquaculture was used in China circa 2500 BC. When the waters lowered after river floods, some fishes, namely carp, were held in artificial lakes. Their brood were later fed using nymphs and silkworm feces, while the fish themselves were eaten as a source of protein. The Hawaiian people practiced aquaculture by constructing fish ponds (see Hawaiian aquaculture). A remarkable example from ancient Hawaii is the construction of a fish pond, dating from at least 1,000 years ago, at Alekoko. According to legend, it was constructed by the mythical Menehune. The Japanese practiced cultivation of seaweed by providing bamboo poles and, later, nets and oyster shells to serve as anchoring surfaces for spores. The Romans often bred fish in ponds.
The practice of aquaculture gained prevalence in Europe during the Middle Ages, since fish were scarce and thus expensive. However, improvements in transportation during the 19th century made fish easily available and inexpensive, even in inland areas, causing a decline in the practice. The first North American fish hatchery was constructed on Dildo Island, Newfoundland Canada in 1889, it was the largest and most advanced in the world.
Americans were rarely involved in aquaculture until the late 20th century, but California residents harvested wild kelp and made legal efforts to manage the supply starting circa 1900, later even producing it as a wartime resource. (Peter Neushul, Seaweed for War: California's World War I kelp industry, Technology and Culture 30 (July 1989), 561-583)
In contrast to agriculture, the rise of aquaculture is a contemporary phenomenon. According to professor Carlos M. Duarte About 430 (97%) of the aquatic species presently in culture have been domesticated since the start of the 20th century, and an estimated 106 aquatic species have been domesticated over the past decade. The domestication of an aquatic species typically involves about a decade of scientific research. Current success in the domestication of aquatic species results from the 20thcentury rise of knowledge on the basic biology of aquatic species and the lessons learned from past success and failure. The stagnation in the world's fisheries and overexploitation of 20 to 30% of marine fish species have provided additional impetus to domesticate marine species, just as overexploitation of land animals provided the impetus for the early domestication of land species
In the 1960s, the price of fish began to climb, as wild fish capture rates peaked and the human population continued to rise. Today, commercial aquaculture exists on an unprecedented, huge scale. In the 1980s, open-netcage salmon farming also expanded; this particular type of aquaculture technology remains a minor part of the production of farmed finfish worldwide, but possible negative impacts on wild stocks, which have come into question since the late 1990s, have caused it to become a major cause of controversy.
In 2003, the total world production of fisheries product was 132.2 million tonnes of which aquaculture contributed 41.9 million tonnes or about 31% of the total world production. The growth rate of worldwide aquaculture is very rapid (> 10% per year for most species) while the contribution to the total from wild fisheries has been essentially flat for the last decade.
In the US, approximately 90% of all shrimp consumed is farmed and imported. In recent years salmon aquaculture has become a major export in southern Chile, especially in Puerto Montt and Quellón, Chile's fastest-growing city.
Farmed fish are kept in concentrations never seen in the wild (e.g. 50,000 fish in a two-acre area.) with each fish occupying less room than the average bathtub. This can cause several forms of pollution. Packed tightly, fish rub against each other and the sides of their cages, damaging their fins and tails and becoming sickened with various diseases and infections.
Some species of sea lice have been noted to target farmed coho and farmed Atlantic salmon specifically. Such parasites may have an effect on nearby wild fish. For these reasons, aquaculture operators frequently need to use strong drugs to keep the fish alive (but many fish still die prematurely at rates of up to 30%) and these drugs inevitably enter the environment.
The lice and pathogen problems of the 1990's facilitated the development of current treatment methods for sea lice and pathogens. These developments reduced the stress from parasite/pathogen problems. However, being in an ocean environment, the transfer of disease organisms from the wild fish to the aquaculture fish is an ever-present risk factor.
The very large number of fish kept long-term in a single location produces a significant amount of condensed feces, often contaminated with drugs, which again affect local waterways. However, these effects are very local to the actual fish farm site and are minimal to non-measurable in high current sites.
In the 1960s, the price of fish began to climb, as wild fish capture rates peaked and the human population continued to rise. Today, commercial aquaculture exists on an unprecedented, huge scale. In the 1980s, open-netcage salmon farming also expanded; this particular type of aquaculture technology remains a minor part of the production of farmed finfish worldwide, but possible negative impacts on wild stocks, which have come into question since the late 1990s, have caused it to become a major cause of controversy.
In 2003, the total world production of fisheries product was 132.2 million tonnes of which aquaculture contributed 41.9 million tonnes or about 31% of the total world production. The growth rate of worldwide aquaculture is very rapid (> 10% per year for most species) while the contribution to the total from wild fisheries has been essentially flat for the last decade.
In the US, approximately 90% of all shrimp consumed is farmed and imported. In recent years salmon aquaculture has become a major export in southern Chile, especially in Puerto Montt and Quellón, Chile's fastest-growing city.
Farmed fish are kept in concentrations never seen in the wild (e.g. 50,000 fish in a two-acre area.) with each fish occupying less room than the average bathtub. This can cause several forms of pollution. Packed tightly, fish rub against each other and the sides of their cages, damaging their fins and tails and becoming sickened with various diseases and infections.
Some species of sea lice have been noted to target farmed coho and farmed Atlantic salmon specifically. Such parasites may have an effect on nearby wild fish. For these reasons, aquaculture operators frequently need to use strong drugs to keep the fish alive (but many fish still die prematurely at rates of up to 30%) and these drugs inevitably enter the environment.
The lice and pathogen problems of the 1990's facilitated the development of current treatment methods for sea lice and pathogens. These developments reduced the stress from parasite/pathogen problems. However, being in an ocean environment, the transfer of disease organisms from the wild fish to the aquaculture fish is an ever-present risk factor.
The very large number of fish kept long-term in a single location produces a significant amount of condensed feces, often contaminated with drugs, which again affect local waterways. However, these effects are very local to the actual fish farm site and are minimal to non-measurable in high current sites.
0 Komentar:
Posting Komentar
Berlangganan Posting Komentar [Atom]
<< Beranda